Stahel–Donoho estimation for high-dimensional data
نویسندگان
چکیده
منابع مشابه
Methods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملStahel-Donoho estimation for high-dimensional data
We discuss two recently proposed adaptations of the well-known StahelDonoho estimator of multivariate location and scatter for high-dimensional data. The first adaptation adjusts the calculation of the outlyingness of the observations while the second adaptation allows to give separate weights to each of the components of an observation. Both adaptations address the possibility that in higher d...
متن کاملFast covariance estimation for high-dimensional functional data
We propose two fast covariance smoothing methods and associated software that scale up linearly with the number of observations per function. Most available methods and software cannot smooth covariance matrices of dimension J > 500; a recently introduced sandwich smoother is an exception but is not adapted to smooth covariance matrices of large dimensions, such as J = 10, 000. We introduce two...
متن کاملDensEst: Density Estimation for Data Mining in High Dimensional Spaces
Subspace clustering and frequent itemset mining via “stepby-step” algorithms that search the subspace/pattern lattice in a top-down or bottom-up fashion do not scale to large high dimensional data bases. Recent “jump” algorithms directly choose candidate subspace regions or patterns. Their scalability and quality depend heavily on the rating of these candidates as mislead jumps incur poor resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Mathematics
سال: 2014
ISSN: 0020-7160,1029-0265
DOI: 10.1080/00207160.2014.933815